青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Discrete-Time-Distributed Adaptive ILC With Nonrepetitive Uncertainties and Applications to Building HVAC Systems

关键字:ITERATIVE LEARNING CONTROL; NONLINEAR MULTIAGENT SYSTEMS; CONSENSUS TRACKING CONTROL; COORDINATION CONTROL; SEEKING; AGENTS

摘要:Aiming to addressing the nonrepetitive uncertainties of multiagent systems, this work proposes a discrete-time-distributed adaptive iterative learning control (DDAILC) scheme for an output consensus problem, where two fundamental requirements in the traditional distributed iterative learning control (ILC) methods, i.e., the identical initial states and the repetitive desired trajectories, are removed. Furthermore, the algorithm design and analysis are directly aimed at discrete-time nonlinear multiagent systems, rather than continuous-time ones, to meet the needs of practical implementations. The iteration-varying trajectory of the virtual leader is included in the learning control protocol for a compensation. The adaptive parameter-updating law works along the iteration dimension by using a general consensus error that contains the output data of adjacent agents. To ensure the estimation of the control gain to be nonzero, a semisaturator is utilized in the parameter-updating law. The convergence of the output consensus is shown rigorously. Both numerical and practical examples are used to test the theoretical results. Moreover, the DDAILC efficiently improves performance of the building heating, ventilation, and air conditioning (HVAC) system by utilizing both the distributed topology and the repetitive dynamic characteristic.

卷号:52

期号:8

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn