青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Data-Driven Adaptive Consensus Learning From Network Topologies

关键字:LEADER-FOLLOWING CONSENSUS; NONLINEAR MULTIAGENT SYSTEMS; TRACKING CONTROL; TIME; DISTURBANCE

摘要:The problem of consensus learning from network topologies is studied for strongly connected nonlinear nonaffine multiagent systems (MASs). A linear spatial dynamic relationship (LSDR) is built at first to formulate the dynamic I/O relationship between an agent and all the other agents that are communicated through the networked topology. The LSDR consists of a linear parametric uncertain term and a residual nonlinear uncertain term. Utilizing the LSDR, a data-driven adaptive learning consensus protocol (DDALCP) is proposed to learn from both time dynamics of agent itself and spatial dynamics of the whole MAS. The parametric uncertainty and nonlinear uncertainty are estimated through an estimator and an observer respectively to improve robustness. The proposed DDALCP has a strong learning ability to improve the consensus performance because time dynamics and network topology information are both considered. The proposed consensus learning method is data-driven and has no dependence on the system model. The theoretical results are demonstrated by simulations.

卷号:33

期号:8

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn