论文成果

Void-confinement effects of porous hollow nanostructures boost selectivity and durability of oxygen reduction reaction

发布时间:2024-12-24  点击次数:

关键字:CATALYTIC-ACTIVITY; ORR; CONVERSION

摘要:Synthesis of cost-effective electrocatalysts for oxygen reduction reaction (ORR) has received wide attention due to their sluggish kinetics, which limits the development and application of fuel cell technique. In this work, we report a versatile synthetic approach to prepare a series of small-sized Ag@MNi (M = Pd, Pt, Rh, Ru) nano- crystals with core-shell structures by a simple solvothermal method. According to characterization analysis, surface segregation of Pd was proved in the outermost layer with the Pd-rich shell layer, which can regulate the adsorption energy of *OH. Electrochemical results show that the onset potential and half-wave potential of Ag@PdNi nanocrystals (Ag@PdNi NCs) are 1.005 and 0.913 V vs. RHE (reversible hydrogen electrode), respectively, with a Tafel slope of 55.31 mV dec-1 and strong ORR catalytic durability, which is similar to Ag@MNi (M = Pt, Rh, Ru) NCs and slightly higher than that of PdAg alloy nanoparticles (PdAg alloy NPs), PdNi alloy nanoparticles (PdNi alloy NPs), commercial Pd black and even commercial Pt/C, in alkaline medium. Density Functional (DFT) calculations show that the presence of Ag core effectively promotes the segregation of Pd atoms to the outer shell surface, where Ni provides better segregated substitution sites for Pd, which significantly improves the ORR activity and durability due to the electronic synergistic effect between Ag core nuclei and Pd shell can reduce the adsorption strength of OHads.

卷号:500

期号:-

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量: | 最后更新时间:-- | 开通时间:-- |手机版