访问量:    最后更新时间:--

论文成果

浅谈工科类高校大学英语语音教学

关键字:HYDROGEN EVOLUTION REACTION; CO2 PHOTOREDUCTION; EFFICIENT; ELECTROCATALYSTS; POLARIZATION; NANOSHEETS; OXIDATION
摘要:As a technology for emerging environmental applications, water electrolysis is a significant approach for producing clean hydrogen energy. In this work, we used an efficacious piezoelectric method to significantly improve the catalytic water splitting activity without affecting the morphology as well as the components by altering the bulk charge separation state inside the material. The obtained CuCo2O4 nanorods were treated under a corona polarization apparatus, which significantly enhanced ferroelectricity relative to that before the polarization increasing the physical charge separation and piezoelectric potential energy, enhancing the green hydrogen production. The polarized CuCo2O4 nanorods exhibit excellent water electrolysis performance under alkaline conditions, with hydrogen evolution overpotential of 78.7 mV and oxygen evolution overpotential of 299 mV at 10 mA cm(-2), which is much better than that of unpolarized CuCo2O4 nanorods. Moreover, the Tafel slopes of polarized CuCo2O4 nanorods are 86.9 mV dec(-1) in the HER process and 73.1 mV dec(-1) in the OER process, which are much lower than commercial catalysts of Pt/C (88.0 mV dec(-1) for HER) or RuO2 (78.5 mV dec(-1) for OER), proving faster kinetic on polarized CuCo2O4 nanorods due to their higher electroconductibility and intrinsic activity. In particular, polarized CuCo2O4 nanorods are identified as promising catalysts for water electrolysis with robust stability, offering outstanding catalytic performance and excellent energy efficiency.
卷号:16
期号:29
是否译文:

徐广蕊

Contact information

系方式

邮编:

邮箱:

通讯/办公地址:

邮箱:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn