关键字:SELECTIVE SYNTHESIS; CVD SYNTHESIS; GROWTH; CO; ARRAYS
摘要:Both the structure and type of support material significantly influence the performances of supported metal catalyst in synthesizing single-walled carbon nanotubes (SWNTs) through chemical vapor deposition. In this work, thin porous boehmite sheets prepared by hydrothermal method are applied as the precursor carriers for developing a supported iron catalyst. Upon high temperature calcination, the resulting alumina (alpha-Al2O3) and Fe2O3 form a solid solution, which catalyzes the growth of SWNTs at a low temperature of 700 degrees C. Detailed optical characterizations reveal that mainly subnanometer SWNTs with a narrow chirality distribution are synthesized. To explore the roles of catalyst support in catalysis, a magnesia (MgO) supported Fe catalyst is also designed. The MgO supported catalyst achieves an even narrower chirality distribution compared to the aluminasupported counterpart. By combining experimental catalyst characterizations with theoretical calculations, the SWNT chirality distribution is revealed to be highly sensitive to the surface basicity of the support materials. The strong basicity of the MgO facilitates electron transfer to the supported Fe nanoparticles, enhancing the adsorption and dissociation of the carbon precursor. This interaction ultimately promotes the nucleation of SWNTs by a perpendicular model.
卷号:238
期号:-
是否译文:否