中文

环流循环除尘系统的流场与性能

Hits:

  • Key Words:GRAPHENE OXIDE; CARBON NANOTUBES; ELECTRONIC-STRUCTURE; PROTEIN ADSORPTION; GRAPHYNE; MEMBRANE; TOXICITY; PHOSPHOLIPIDS; MECHANISMS; EXTRACTION

  • Abstract:From manufacture to disposal, the interaction of graphdiyne based nanomaterials with living organisms is inevitable and crucial. However, the cytotoxic properties of this novel carbon nanomaterial are rarely investigated, and the mechanisms behind their cytotoxicity are totally unknown. In this study, the antibacterial activity of graphdiyne (GDY) and graphdiyne oxide (GDYO) is reported. GDY is capable of inhibiting broad-spectrum bacterial growth while exerting moderate cytotoxicity on mammalian cells. In comparison, GDYO exhibits lower antibacterial activity than that of GDY. Then an alterable, synergetic antibacterial mechanism of GDY, involving wrapping bacterial membrane, membrane insertion and disruption, and reactive oxygen species generation is demonstrated, while the differential gene expression analysis indicates that GDY could only alter the bacterial metabolism slightly and the oxidative stress route may be a minor bactericidal factor. The investigation of the antibacterial behaviors of GDY based nanomaterials may provide useful guidelines for the future design and application of this novel molecular allotrope of carbon.

  • Volume:16

  • Issue:34

  • Translation or Not:no


  • Email:

  • Telephone:

Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..