青岛科技大学  English 
赵文仓
赞  

教师拼音名称:zhaowencang

手机版

访问量:

最后更新时间:..

Comprehensive mining of information in Weakly Supervised Semantic Segmentation: Saliency semantics and edge semantics

关键字:Saliency semantics ,edge semantics

摘要:In the studies of Weakly Supervised Semantic Segmentation (WSSS) with image-level labels, there is an issue of incomplete semantic information, which we summarize as insufficient saliency semantic mining and neglected edge semantics. We proposes a two-stage framework, Saliency Semantic Full Mining-Edge Semantic Mining (SSFM-ESM), which views WSSS from the perspective of comprehensive information mining. In the first stage, we rely on SSFM to address the insufficient saliency semantic mining. The network learns feature representations consistent with salient regions via the proposed pixel-level class-agnostic distance loss. Then, the full saliency semantic information is mined by explicitly receiving pixel-level feedback. The initial pseudo label with complete saliency semantic information can be obtained after the first stage. In the second stage, we focus on the mining of edge semantic information through the proposed edge semantic mining module. Specifically, we guide the initial pseudo-label avoid learning about false semantic information and obtain high-confidence edge semantics. The self-correction ability of the segmentation network is also fully utilized to obtain more edge semantic information. Extensive experiments are conducted on the PASCAL VOC 2012 and MS COCO 2014 datasets to verify the feasibility and superiority of this approach.

卷号:169

期号:-

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn