青岛科技大学  English 
赵文仓
赞  

教师拼音名称:zhaowencang

手机版

访问量:

最后更新时间:..

Comprehensive mining of information in Weakly Supervised Semantic Segmentation: Saliency semantics and edge semantics

关键字:REPRESENTATIONS

摘要:Domain Generalization (DG) focuses on the Out-Of-Distribution (OOD) generalization, which is able to learn a robust model that generalizes the knowledge acquired from the source domain to the unseen target domain. However, due to the existence of the domain shift, domain-iniant representation learning is challenging. Guided by fine-grained knowledge, we propose a novel paradigm Mask-Shift-Inference (MSI) for DG based on the architecture of Convolutional Neural Networks (CNN). Different from relying on a series of constraints and assumptions for model optimization, this paradigm novelly shifts the focus to feature channels in the latent space for domain-iniant representation learning. We put forward a two-branch working mode of a main module and multiple domain-specific sub-modules. The latter can only achieve good prediction performance in its own specific domain but poor predictions in other source domains, which provides the main module with the fine-grained knowledge guidance and contributes to the improvement of the cognitive ability of MSI. Firstly, during the forward propagation of the main module, the proposed MSI accurately discards unstable channels based on spurious classifications ying across domains, which have domain-specific prediction limitations and are not conducive to generalization. In this process, a progressive scheme is adopted to adaptively increase the masking ratio according to the training progress to further reduce the risk of overfitting. Subsequently, our paradigm enters the compatible shifting stage before the formal prediction. Based on maximizing semantic retention, we implement the domain style matching and shifting through the simple transformation through Fourier transform, which can explicitly and safely shift the target domain back to the source domain whose style is closest to it, requiring no additional model updates and reducing the domain gap. Eventually, the paradigm MSI enters the formal inference stage. The updated target domain is predicted in the main module trained in the previous stage with the benefit of familiar knowledge from the nearest source domain masking scheme. Our paradigm is logically progressive, which can intuitively exclude the confounding influence of domain-specific spurious information along with mitigating domain shifts and implicitly perform semantically iniant representation learning, achieving robust OOD generalization. Extensive experimental results on PACS, VLCS, Office-Home and DomainNet datasets verify the superiority and effectiveness of the proposed method.

卷号:179

期号:-

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn