• English

  • 青岛科技大学

杨树国

基于数学建模的“三轴联动、五层递进”研究生创新能力培养模式的研究与实践 -----第九届山东省省级教学成果奖佐证材料一、成果曾获奖励二、团队主要成员指导研究生数学建模竞赛获奖统计三、我校连续12年获“中国研究生数学建模竞赛优秀组织奖”荣誉称号四、团队主要成员获批教研项目五、团队主要成员获批课程立项六、团队主要成员的教学论文和教材七、成果推广应用证明

查看更多>>

Attention-enhanced deep learning model for reconstruction and downscaling of thermocline depth in the tropical Indian Ocean

发布时间:2025-07-14 点击次数:

  • 关键字:IN-SITU; NEURAL-NETWORK; HEAT-CONTENT; TEMPERATURE; SALINITY; CIRCULATION; VARIABILITY; MECHANISMS; WIND; SST
  • 摘要:Accurate estimation of high-resolution thermocline depth is important for investigating ocean processes and climate variability on multiple scales. Due to the sparse coverage and high costs associated with in situ observations, reconstructing ocean interior structure from sea surface data serves as a valuable alternative. In this study, a new deep learning model named Enhanced Block Attention Module-Convolutional Neural Network (EBAM-CNN) was proposed to reconstruct thermocline depth in the tropical Indian Ocean (TIO) from 1993 to 2022. Absolute dynamic topography (ADT), sea surface temperature (SST), and sea surface wind (SSW), along with geographic information (latitude and longitude) and temporal data, were employed as input variables. In comparison with the traditional convolutional neural network (CNN) model, the proposed model demonstrates better performance, with an overall Root Mean Square Error (RMSE) of 5.29 m and a Pearson Correlation Coefficient (R) of 0.87. In addition, this study employs a downscaling approach to reconstruct higher-resolution thermocline depth data. An analysis of the downscaling results confirmed that the proposed framework effectively reconstructed mesoscale sea subsurface features from high-resolution surface observations, significantly enhancing thermocline depth estimates and providing robust data support for oceanic and climatic research.
  • 卷号:196
  • 期号:
  • 是否译文: