• English

  • 青岛科技大学

杨树国

基于数学建模的“三轴联动、五层递进”研究生创新能力培养模式的研究与实践 -----第九届山东省省级教学成果奖佐证材料一、成果曾获奖励二、团队主要成员指导研究生数学建模竞赛获奖统计三、我校连续12年获“中国研究生数学建模竞赛优秀组织奖”荣誉称号四、团队主要成员获批教研项目五、团队主要成员获批课程立项六、团队主要成员的教学论文和教材七、成果推广应用证明

查看更多>>

氮氧自由基TEMPO在合成化学中的应用进展

发布时间:2024-12-23 点击次数:

  • 关键字:TROPICAL PACIFIC; ATLANTIC SST; OCEAN; VARIABILITY; SCALE; CIRCULATION; ANOMALIES; FORECASTS
  • 摘要:Accurate sea surface temperature (SST) prediction is vital for disaster prevention, ocean circulation, and climate change. Traditional SST prediction methods, predominantly reliant on time-intensive numerical models, face challenges in terms of speed and efficiency. In this study, we developed a novel deep learning approach using a 3D U-Net structure with multi-source data to forecast SST in the South China Sea (SCS). SST, sea surface height anomaly (SSHA), and sea surface wind (SSW) were used as input variables. Compared with the convolutional long short-term memory (ConvLSTM) model, the 3D U-Net model achieved more accurate predictions at all lead times (from 1 to 30 days) and performed better in different seasons. Spatially, the 3D U-Net model's SST predictions exhibited low errors (RMSE < 0.5 degrees C) and high correlation (R > 0.9) across most of the SCS. The spatially averaged time series of SST, both predicted by the 3D U-Net and observed in 2021, showed remarkable consistency. A noteworthy application of the 3D U-Net model in this research was the successful detection of marine heat wave (MHW) events in the SCS in 2021. The model accurately captured the occurrence frequency, total duration, average duration, and average cumulative intensity of MHW events, aligning closely with the observed data. Sensitive experiments showed that SSHA and SSW have significant impacts on the prediction of the 3D U-Net model, which can improve the accuracy and play different roles in different forecast periods. The combination of the 3D U-Net model with multi-source sea surface variables, not only rapidly predicted SST in the SCS but also presented a novel method for forecasting MHW events, highlighting its significant potential and advantages.
  • 卷号:15
  • 期号:1
  • 是否译文: