孙琼

+

其他联系方式

暂无内容

论文成果

当前位置: 中文主页 > 科学研究 > 论文成果

Rapid and deep photocatalytic degradation of polyvinyl alcohol by black phosphorus quantum dot sensitized g-C3N4

  • 发布时间:2024-01-19
  • 点击次数:

  • 关键字:PERFORMANCE; OXIDATION
  • 摘要:To address the pollution caused by polyvinyl alcohol (PVA) waste, a composite photocatalyst is developed by sensitizing g-C3N4 with black phosphorus quantum dots (BPQDs) using a simple mechanical stirring method. Both g-C3N4 and BPQDs are inorganic nonmetallic semiconductors with well-matched band positions, facilitating efficient photoinduced charge transfer. The periodic table's adjacent relationship between C, N and P elements allows easy formation of P-N or P-C bonds by replacing C or N atoms with P atoms. The resulting composite shows uniform decoration of two-dimensional layered g-C3N4 with BPQDs with an average size of 2.2 nm. Under solar light simulator irradiation for 20 min, the composite photocatalyst exhibits significantly enhanced photocatalytic activity, with PVA degradation efficiency increasing from 27.1% (pure g-C3N4) to 85.9%. Experimental results and density functional theoretical calculations suggest the formation of a Z-scheme route at the gC3N4/BPQDs interface. This facilitates photoinduced electron transfer from g-C3N4 to BPQDs, leading to improved carrier production and separation, reduced charge-transfer resistance, and accelerated PVA degradation. The proposed composite photocatalyst holds promise for addressing PVA pollution and improving environmental sustainability.
  • 卷号:473
  • 期号:
  • 是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn