Profile:
教育及工作经历
2013-今 青岛科技大学材料科学与工程学院,新能源材料与器件专业,教师
2011-2013 青岛科技大学材料科学与工程学院,博士后
2006-2011 浙江大学化学系 博士研究生
2002-2006 浙江大学化学系 本科
研究方向
1. 光催化降解处理环境污水
2. 光催化二氧化碳还原
3. 新型半导体太阳能电池
4. 光催化燃料电池
主持科研项目
1. 国家自然科学基金青年基金项目(51402161),全钙钛矿相量子点敏化太阳能电池的组装与性能表征。
2. 中国博士后科学基金特别资助(2013T60652),钙钛矿型量子点敏化单晶TiO2阵列全固态高效太阳能电池。
3. 中国博士后科学基金面上资助(2012M521297),铜量子点修饰氧化钛单晶阵列太阳能电池组装及性能研究。
4. 青岛市应用基础研究计划项目(14-2-4-51-jch),全钙钛矿型量子点敏化太阳能电池的性能研究与器件组装。
5. 山东省博士后创新项目专项资金(201203028),铜量子点修饰单晶二氧化钛阵列太阳能电池的性能研究。
6. 福州大学能源与环境光催化国家重点实验室开放课题(SKLPEE-KF201707),磁性铁修饰TiO2光催化剂的固载化研究。
主持教学项目
1. 孙琼,李桂村,崔光磊,刘佳,尹正茂,石良,冯建光,青岛科技大学2022年教学改革研究项目(校级重点项目),校所协同育人在新能源材料与器件专业建设中的融合与改革。
2. 孙琼,李桂村,姜鲁华,王莉,尹正茂,石良,冯建光,青岛科技大学2020年校级教学改革项目(自筹项目),“新工科”背景下专业课程模块化教学改革研究——以新能源材料与器件专业为例。
3. 孙琼,刘静,石良,刘静(小). 青岛科技大学2018年教学改革研究项目(青年项目),新能源专业实验班班主任与导师制度的融合模式探索.
授权专利
1.董立峰,孙琼,李凯静. 一种银-铁氧化物复合结构薄膜及其制备方法与应用。专利号:ZL 202010730933.1
2.孙琼,洪永,刘秋红,董立峰. 一种钛酸锶-二氧化钛复合纳米管阵列薄膜及其制备方法与应用。专利号:ZL 201610809678.3
3. 董立峰,孙琼,于立岩,张乾,董红周. 表面铜氧化物量子点修饰的二氧化钛粉末及其制备方法。专利号:ZL 201110296035.0
4. 董立峰,孙琼,孙先淼. 一种金红石型二氧化钛纳米线薄膜及其制备方法和用途。专利号:ZL 201210234592.4
5. 许宜铭,孙琼. 一种表面铁修饰的二氧化钛光催化剂及其制备方法和用途。专利号:ZL 201110170381.4
代表性学术论文
1. Sun L., Xiong K., Zhang B., Fang J., He Y., Wang M., Gan Z., Du F., Sun Q.*, Yu L.*, Dong L*. Synergetic PVA degradation and H2 evolution in photocatalytic fuel cells using Ag@Fe2O3 cathode. Frontiers of Chemical Science and Engineering 2024, 18(1): 8.
2. He Y., Sun Q.*, Sun L., Gan Z., Yu L.*, Dong L.* Design and mechanism insight on SiC quantum dots sensitized inverse opal TiO2 with superior photocatalytic activities under sunlight. Frontiers of Chemical Science and Engineering 2023, 17(12), 1913-1924.
3. Sun L., Sun Q.*, He Y., Feng J., Gan Z., Yu L.*, Dong L.* Rapid and deep photocatalytic degradation of polyvinyl alcohol by black phosphorus quantum dot sensitized g-C3N4. Chemical Engineering Journal 2023, 473, 145367.
4. Sun Q.*, Zhang B., He Y., Sun L., Hou P., Gan Z., Yu L.*, Dong L.* Design and synthesis of black phosphorus quantum dot sensitized inverse opal TiO2 photonic crystal with outstanding photocatalytic activities. Applied Surface Science 2023, 609, 155442.
5. Guo Q., Feng J., Liu H., Xia C., Dong H., Sun Q.*, Yu L.*, Dong L.* Effects of hydronium and hydroxide ion/group on oxygen reduction reaction electrocatalytic activities of N-doped graphene quantum dots. Molecular Catalysis 2022, 517, 112009.
6. Sun Q.*, Han B.*, Li K., Yu L., Dong L.* The synergetic degradation of organic pollutants and removal of Cr(VI) in a multifunctional dual-chamber photocatalytic fuel cell with Ag@Fe2O3 cathode. Separation and Purifiation Technology 2022, 281, 119966.
7. Sun Q.*, Hou P., Wu S., Yu L.*, Dong L.* The enhanced photocatalytic activity of Ag-Fe2O3-TiO2 performed in Z-scheme route associated with localized surface plasmon resonance effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects (Colloid. Surface A) 2021, 628, 127304.
8. Sun Q.*, Wu S., Li K., Han B., Chen Y., Pang B., Yu L.*, Dong L.* The favourable synergistic operation of photocatalysis and catalytic oxygen reduction reaction by a novel heterogeneous CoFe2O4-TiO2 nanocomposite. Applied Surface Science 2020, 516, 146142.
9. Sun Q.*1, Li K.1, Wu S., Han B., Sui L.*, Dong L.* Remarkable improvement of TiO2 for dye photocatalytic degradation by a facile post-treatment. New Journal of Chemistry 2020, 44, 1942-1952.
10. Li K., Sun Q.*, Wu S., You D., Zang T., Yu L., Sui L.*, Dong L.* The remarkable morphology regulatory effect of NH4+ ions on TiO2 nanorod arrays and their application in dye-sensitized solar cells. Applied Physics A-Materials Science & Processing 2019, 125, 245
11. Sun Q.*, Wu S., You D., Zang T., Dong L.* Novel composite functional photocatalytic fuel cell assisted by Fenton-like reactions. Applied Surface Science 2019, 467-468, 825-835.
12. Sun Q.*, Hong Y.; Zang T.; Liu Q.; Yu L.; Dong L.* The application of heterostructured SrTiO3-TiO2 nanotube arrays in dye-sensitized solar cells. J. Electrochem. Soc. 2018, 165 (4), H3069-H3075.
13. Sun Q.*; Hong Y.; Liu Q.; Dong L.* Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2. Appl. Surf. Sci. 2018, 430, 399-406.
14. Sun Q.; Hong Y.; Liu Q.; Zhang M.; Yu L.*; Dong L.* Growth of nitrogen-doped rutile TiO2 nanorod arrays and their improved performance in all-solid-state solar cells. Mater. Res. Express 2017, 4(7), 075023.
15. Sun Q.; Sun X.; Li Y.; Yu L.; Dong L.* Correlations between morphology and photoelectrical properties of single-crystal rutile TiO2 nanorods. Sci. Adv. Mater. 2013, 5(9), 1221-1230.
16. Sun Q.; Li Y.; Sun X.; Dong L.* Improved Photoelectrical Performance of Single-Crystal TiO2 Nanorod Arrays by Surface Sensitization with Copper Quantum Dots. ACS Sustainable Chem. Eng. 2013, 1(7), 798-804.
17. Sun Q.; Sun X.; Dong H.; Zhang Q.; Dong L.* Copper Quantum Dots on TiO2: a High-performance, Low-cost and Nontoxic Photovoltaic Material. J. Renewable Sustainable Energy. 2013, 5(2), 021413.
18. Sun Q.; Leng W.; Li Z.; Xu Y.* Effect of surface Fe2O3 clusters on the photocatalytic activity of TiO2 for phenol degradation in water. J. Hazard. Mater. 2012, 229-230, 224-232.
19. Sun Q.; Xu Y.* Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water, J. Phys. Chem. C 2010, 114(44), 18911-18918.
20. Sun Q.; Xu Y.* Sensitization of TiO2 with Aluminum Phthalocyanine: Factors Influencing the Efficiency for Chlorophenol Degradation in Water under Visible Light, J. Phys. Chem. C 2009, 113(28), 12387-12394.