青岛科技大学  English 
樊智敏
赞  

教师拼音名称:fanzhimin

手机版

访问量:

最后更新时间:..

Maneuverability prediction of ship nonlinear motion models based on parameter identification and optimization

关键字:SYSTEM

摘要:Ship maneuverability prediction accuracy depends on the accuracy of ship motion model parameter identification. To solve the problem of parameter identification of nonlinear ship motion model, this paper proposes a online parameter identification algorithm of maximum likelihood multi -innovation recursive least squares (ML-MI-RLS) for ship motion model parameter identification. To solve the parameter drift phenomenon, the improved gray wolf optimization (IGWO) algorithm is proposed to optimize the parameter identification results. The combination of system identification and intelligent optimization algorithm not only solves the parameter drift problem of system identification, but also compensates for the lack of real-time performance of existing algorithms. The effectiveness of the ML-MI-RLS algorithm is verified by parameter identification simulations. The online identification performance of the algorithm is verified by ying the ship maneuverability parameters simulation. The proposed method is verified to have excellent performance by ship maneuverability prediction simulation.

卷号:236

期号:-

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn