关键字:Discrete time control systems;Computational efficiency - Digital control systems - Inverse problems - Iterative methods - Learning algorithms - Linear systems - Linearization - Mathematical models - Nonlinear systems - Robustness (control systems) - Transient analysis - Two term control systems;Computational model - Convergence - convergence evaluation - Data driven - Dynamic linearization - Higher-order learning - Iterative learning control
摘要:Based on a nonlifted iterative dynamic linearization formulation, a novel data-driven higher order optimal iterative learning control (DDHOILC) is proposed for a class of nonlinear repetitive discrete-time systems. By using the historical data, additional tracking errors and control inputs in previous iterations are used to enhance the online control performance. From the online data, additional control inputs of previous time instants within the current iteration are utilized to improve transient response. The data-driven property of the proposed method implies that no model information except for the I/O data is utilized. The computational complexity is reduced by avoiding matrix inverse operation in the proposed DDHOILC approach due to the nonlifted linear formulation of the original model. The asymptotic convergence is proved rigorously. Furthermore, the convergence property is analyzed and evaluated via three performance indexes. By elaborately selecting the higher order factors, the higher order learning control law outperforms the lower order one in terms of convergence performance. Simulation results verify the effectiveness of the proposed approach.<br/> IEEE
卷号:
期号:
是否译文:否