关键字:CONTROL-SYSTEMS; BATCH PROCESSES; PID CONTROLLER; ILC
摘要:In this article, an indirect adaptive iterative learning control (iAILC) scheme is proposed for both linear and nonlinear systems to enhance the P-type controller by learning from set points. An adaptive mechanism is included in the iAILC method to regulate the learning gain using input-output measurements in real time. An iAILC method is first designed for linear systems to improve control performance by fully utilizing model information if such a linear model is known exactly. Then, an iterative dynamic linearization (IDL)-based iAILC is proposed for a nonlinear nonaffine system, whose model is completely unknown. The IDL technique is employed to deal with the strong nonlinearity and nonaffine structure of the systems such that a linear data model can be attained consequently for the algorithm design and performance analysis. The convergence of the developed iAILC schemes is proved rigorously, where contraction mapping, two-dimensional (2-D) Roesser's system theory, and mathematical induction are employed as the basic analysis tools. Simulation studies are provided to verify the developed theoretical results.
卷号:68
期号:3
是否译文:否