关键字:MULTIAGENT SYSTEMS; TRANSMISSION STRATEGY; TRACKING CONTROL; REPRESENTATION
摘要:In this work, a lifted event-triggered iterative learning control (lifted ETILC) is proposed aiming for addressing all the key issues of heterogeneous dynamics, switching topologies, limited resources, and model-dependence in the consensus of nonlinear multi-agent systems (MASs). First, we establish a linear data model for describing the I/O relationships of the heterogeneous nonlinear agents as a linear parametric form to make the non-affine structural MAS affine with respect to the control input. Both the heterogeneous dynamics and uncertainties of the agents are included in the parameters of the linear data model, which are then estimated through an iterative projection algorithm. On this basis, a lifted event-triggered learning consensus is proposed with an event-triggering condition derived through a Lyapunov function. In this work, no threshold condition but the event-triggering condition is used which plays a key role in guaranteeing both the stability and the iterative convergence of the proposed lifted ETILC. The proposed method can reduce the number of control actions significantly in batches while guaranteeing the iterative convergence of tracking error. Both rigorous analysis and simulations are provided and confirm the validity of the lifted ETILC. (c) 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
卷号:358
期号:7
是否译文:否