青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Neural network based terminal iterative learning control for uncertain nonlinear non-affine systems

关键字:terminal iterative learning control; neural network; nonlinear non-affine system; run-varying reference; initial state variance

摘要:In this paper, a novel neural network based terminal iterative learning control method is proposed for a class of uncertain nonlinear non-affine systems to track run-varying reference point with initial state variance. In this new control scheme, the non-affine terminal dynamics are converted affine, and the unrealisable recurrent network is simplified into realisable static network. As a result, the effect of initial state and control signal on terminal output can be estimated by neural network. With this estimation, the proposed control scheme can drive nonlinear non-affine systems to track run-varying reference point in the presence of initial state variance. Stability and convergence of this approach are proven, and numerical simulation results are provided to verify its effectiveness. Copyright (C) 2014 John Wiley & Sons, Ltd.

卷号:29

期号:10

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn