青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Binary-Valued Observation Based Data-driven Iterative Learning Control

摘要:In this paper, a binary-valued observation-based data-driven iterative learning control(BVO-DDILC) scheme is proposed. An equivalent dynamic linearization method is used to transform the discrete-time nonlinear system to a linear data model. Note that the output of the system is measured by a binary-valued sensor. With the help of linear data model, the threshold value of binary-valued sensor is designed to be adjustable. On this basis, the parameter estimation law and control law with binary-valued observation are designed respectively. Strict mathematical analysis shows that the proposed BVODDILC algorithm can guarantee the convergence of parameter estimation in the finite time interval along the iteration axis, and the tracking error is also asymptotically convergent. A numerical example is given to demonstrate the effectiveness of the proposed method.

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn