青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Multi-lagged-input iterative dynamic linearization based data-driven adaptive iterative learning control

关键字:Iterative methods;Adaptive control systems - Learning algorithms - Linear motors - Linearization - MIMO systems - Numerical methods - Permanent magnets - Two term control systems

摘要:This article presents a multi-lagged-input based data-driven adaptive iterative learning control (M-DDAILC) method for nonlinear multiple-input-multiple-output (MIMO) systems by virtue of multi-lagged-input iterative dynamic linearization (IDL). The original nonlinear and non-affine MIMO system is equivalently transformed into a linear input-output incremental counterpart without loss of dynamics. The proposed learning law utilizes the desired trajectory to cancel the influence from iteration-by-iteration variations, as well as additional multi-lagged inputs to improve control performance. The developed iterative estimation law is more effective and also makes estimation of the unknown parameters easier because the dynamics for each parameter to represent are decreased by dividing the system into multiple components in the multi-lagged-input IDL formulation. Moreover, the proposed M-DDAILC does not need an explicit and accurate model. It is proved to be iteratively convergent with rigorous analysis. Both a numerical example and a practical application to a permanent magnet linear motor are provided to verify the validity and applicability of the proposed method.<br/> &copy; 2018 The Franklin Institute

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn