关键字:adaptive control; iterative learning control; nonlinear data-weighting; time-varying systems; nonstrictly repeatable systems
摘要:In this paper, a new discrete-time adaptive iterative learning control (AILC) approach is presented to deal with nonsector nonlinearities by incorporating a recursive leastsquares algorithm with a nonlinear data weighted coefficient. This scheme is also extended as a d-iteration-ahead adaptive iterative learning predictive control to address for multiple inputs multiple outputs (MIMO) nonlinear systems with unknown input gains. A major distinct feature of the presented methods is that the global stability result is obtained through Lyapunov analysis without assuming any linear growth condition on the nonlinearities. Another distinct feature is that the pointwise convergence of the presented methods is achieved over a finite interval without requiring any identical conditions on the initial states and reference trajectory. [DOI: 10.1115/1.4005272]
卷号:134
期号:2
是否译文:否