青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Neural Network Based Terminal Iterative Learning Control for Tracking Run-Varying Reference Point With Initial State Variance

关键字:Terminal iterative learning control; Neural network; Run-varying reference; Initial state variance

摘要:In this paper, a neural network based terminal iterative learning control (NNTILC) method is proposed for a class of discrete time uncertain linear systems to track run-varying reference point. The zero error initial condition in most of the previous work on terminal iterative learning control (TILC) is removed by the use of neural network. A radial basis function (RBF) neural network is developed to approximate the effect of initial state and reference on terminal output iteratively. By involving these information as well as the reference signal in the control scheme, the proposed NNTILC can drive the system to track run-varying reference point fast and precisely beyond the initial state variance and reference change. Stability and convergence of this approach are proved and computer simulation results are provided to confirm its effectiveness further.

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn