中文

Data-Driven Adaptive Consensus Learning From Network Topologies

Hits:

  • Key Words:LEADER-FOLLOWING CONSENSUS; NONLINEAR MULTIAGENT SYSTEMS; TRACKING CONTROL; TIME; DISTURBANCE

  • Abstract:The problem of consensus learning from network topologies is studied for strongly connected nonlinear nonaffine multiagent systems (MASs). A linear spatial dynamic relationship (LSDR) is built at first to formulate the dynamic I/O relationship between an agent and all the other agents that are communicated through the networked topology. The LSDR consists of a linear parametric uncertain term and a residual nonlinear uncertain term. Utilizing the LSDR, a data-driven adaptive learning consensus protocol (DDALCP) is proposed to learn from both time dynamics of agent itself and spatial dynamics of the whole MAS. The parametric uncertainty and nonlinear uncertainty are estimated through an estimator and an observer respectively to improve robustness. The proposed DDALCP has a strong learning ability to improve the consensus performance because time dynamics and network topology information are both considered. The proposed consensus learning method is data-driven and has no dependence on the system model. The theoretical results are demonstrated by simulations.

  • Volume:33

  • Issue:8

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..