中文

Data-driven adaptive tuning of iterative learning control

Hits:

  • Key Words:SYSTEMS; TRACKING; STATE; ILC

  • Abstract:In this paper, we propose two data-driven adaptive tuning (DDAT) approaches of iterative learning control (ILC) for nonlinear non-affine systems. First, a compact-form iterative dynamic linearization (CFIDL) method is introduced to transfer the original nonlinear system into a linear data model. Then, we design an objective function for the tuning of the learning gains of a PD-type ILC law. By optimizing the designed cost function subjected to the linear data model, a CFIDL-based DDAT method is proposed, where only the real I/O data are used without requiring any mechanistic model information. Furthermore, the results are extended by introducing a partial-form iterative dynamic linearization (PFIDL) method for the purpose of utilizing more additional control information. Following the similar steps, a PFIDL-based DDAT method is developed for learning gain tuning of the PD-type ILC scheme. Both the proposed DDAT methods can help the PD-type ILC have a better robustness against to the uncertainties since they can use the real I/O data to iteratively tune the learning gains. The convergence of the DDAT-based PD-type ILC methods has been proved rigorously. The effectiveness of the two proposed DDAT-based ILC methods are further verified through simulations.

  • Volume:44

  • Issue:15

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..