关键字:刀具磨损;时空特征;多传感器;MC-1DCNN;BiLSTM
摘要:针对传统深度学习方法监测刀具磨损状况时,相关特征提取繁琐,数据隐含信息提取不全面导致识别精度较低等问题,提出了结合时空特征的多传感器刀具磨损监测模型。首先,将不同传感器采集的波形信号经简单预处理后作为输入,再使用多通道1D卷积神经网络(MC-1DCNN)提取输入数据的空间特征;然后,利用双向长短时记忆网络(BiLSTM)提取时序特征;最终,由全连接层和Softmax层对特征进行分类。仿真结果表明,监测模型流程简单、识别准确率高,具备较强的可适用性。
卷号:No.600
期号:02
是否译文:否