论文成果

Ni-Fe-Co-P coatings on coiled carbon nanofibers

发布时间:2024-01-19  点击次数:

关键字:ENZYME; DISCOVERY; OXIDASE

摘要:Nanozymesconstitute an emerging class of nanomaterialswith enzyme-likecharacteristics. Over the past 15 years, more than 1200 nanozymeshave been developed, and they have demonstrated promising potentialsin broad applications. With the diversification and complexity ofits applications, traditional empirical and trial-and-error designstrategies no longer meet the requirements for efficient nanozymedesign. Thanks to the rapid development of computational chemistryand artificial intelligence technologies, first-principles methodsand machine-learning algorithms are gradually being adopted as a moreefficient and easier means to assist nanozyme design. This reviewfocuses on the potential elementary reaction mechanisms in the rationaldesign of nanozymes, including peroxidase (POD)-, oxidase (OXD)-,catalase (CAT)-, superoxide dismutase (SOD)-, and hydrolase (HYL)-likenanozymes. The activity descriptors are introduced, with the aim ofproviding further guidelines for nanozyme active material screening.The computing- and data-driven approaches are thoroughly reviewedto give a proposal on how to proceed with the next-generation paradigmrational design. At the end of this review, personal perspectiveson the prospects and challenges of the rational design of nanozymesare put forward, hoping to promote the further development of nanozymestoward superior application performance in the future.

卷号:17

期号:14

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量: | 最后更新时间:-- | 开通时间:-- |手机版