教授
博士生导师
硕士生导师
教师拼音名称:zhuxiaodong
电子邮箱:
职称:教授
毕业院校:哈尔滨工业大学
学术荣誉:2019 当选:省高端人才
邮箱:
2019-09-26 泰山学者青年专家
2009-01-06 “国防科技创新团队”核心成员
2007-05-15 黑龙江省优秀毕业生(博士)
2007-06-30 哈尔滨工业大学优秀毕业生
最后更新时间:..
关键字:ELECTRODES; FABRICATION; STORAGE
摘要:Three-dimensional micro-supercapacitors (3D MSCs) have accelerated the development of microenergy-storage modules for miniaturized and portable electronics. However, the low energy density, complex construction strategy, and low assembly accuracy of a 3D MSC restrict its practical application. Herein, we design a simple construction strategy for a 3D MSC with high energy density by mortise and tenon structures. Wood-derived carbon modified by nitrogen-doped carbon nanotube arrays (N-CNT-WDC) provides an ordered ion transport channel and a large active specific surface area, availing the improvement of the energy density of a 3D MSC. Its strong carbon skeleton structure supports the construction of 3D interdigital electrodes with a tenon structure by laser, realizing precise and regulable assembly of 3D MSCs through a mortise and tenon joint. The prepared 3D MSC based on N-CNT-WDC shows an excellent volumetric capacitance of 93.66 F cm-3, a high volumetric energy density of 12 mW h cm-3 at 600 mA cm-3, and an 85% retention rate of capacitance after 10,000 cycles of charge and discharge at 1000 mA cm-3. Furthermore, the mortise and tenon structure realizes diversified integration of 3D MSCs, making the integrated manufacturing of 3D microdevices more convenient and promoting their application in microelectronic devices.
卷号:15
期号:17
是否译文:否