教授
博士生导师
硕士生导师
教师拼音名称:zhuxiaodong
电子邮箱:
职称:教授
毕业院校:哈尔滨工业大学
学术荣誉:2019 当选:省高端人才
邮箱:
2019-09-26 泰山学者青年专家
2009-01-06 “国防科技创新团队”核心成员
2007-05-15 黑龙江省优秀毕业生(博士)
2007-06-30 哈尔滨工业大学优秀毕业生
最后更新时间:..
关键字:Fibrous MXene aerogels; Tunable pore structures; Modularized solar evaporator; Photothermal desalination
摘要:The seawater desalination based on solardriven interfacial evaporation has emerged as a promising technique to alleviate the global crisis on freshwater shortage.However,achieving high desalination performance on actual,oil-contaminated seawater remains a critical challenge,because the transport channels and evaporation interfaces of the current solar evaporators are easily blocked by the oil slicks,resulting in undermined evaporation rate and conversion efficiency.Herein,we propose a facile strategy for fabricating a modularized solar evaporator based on flexible MXene aerogels with arbitrarily tunable,highly ordered cellular/lamellar pore structures for high-efficiency oil interception and desalination.The core design is the creation of 1D fibrous MXenes with sufficiently large aspect ratios,whose superior flexibility and plentiful link forms lay the basis for controllable 3D assembly into more complicated pore structures.The cellular pore structure is responsible for effective contaminants rejection due to the multi-sieving effect achieved by the omnipresent,isotropic wall apertures together with underwater superhydrophobicity,while the lamellar pore structure is favorable for rapid evaporation due to the presence of continuous,large-area evaporation channels.The modularized solar evaporator delivers the best evaporation rate(1.48 kg m~(-2) h~(-1)) and conversion efficiency(92.08%) among all MXene-based desalination materials on oil-contaminated seawater.
卷号:v.15
期号:05
是否译文:否