论文成果
Improved Particle Filter for Object Tracking
点击次数:
关键字:Particle filter; Object Tracking; Robust Tracking
摘要:Robust real-time tracking of non-rigid objects is a challenging task. Color is a powerful feature for tracking deformable objects in image sequences with complex backgrounds. Color distribution is applied, as it is robust to partial occlusion, is rotation and scale invariant and computationally efficient. Particle filter has been proven very successful for non-linear and non-Gaussian estimation tracking problems. The article presents the integration of color distributions into particle filtering. A target is tracked with a particle filter by comparing its histogram with the histograms of the sample positions using the Bliattacharyya distance. Additionally, to solve the sample impoverishment (all particles collapse to a single point within a few iterations) in the particle-filter algorithm, a new resampling algorithm is proposed to tackle sample impoverishment. The performance of the proposed filter is evaluated qualitatively on various real-world video sequences. The experimental results show that the improved color-based particle filter algorithm can reduce sample impoverishment effectively and track the moving object very well.
是否译文:

张涛

教师拼音名称:zhangtao

电子邮箱:

所在单位:自动化教研室

学历:博士研究生

学位:博士

毕业院校:东南大学

所属院系:自动化与电子工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..