青岛科技大学  English 
张建明
赞  

教师拼音名称:zhangjianming

手机版

访问量:

最后更新时间:..

Controllable self-assembly of cellulose nanospheres through phosphoric acid triggered dissolution-regeneration and degradation

关键字:MICROCRYSTALLINE CELLULOSE; CRYSTALLINE PROPERTIES; MOLECULAR-STRUCTURE; LYOCELL FIBERS; IONIC LIQUID; NANOCRYSTALS; NANOPARTICLES; EXTRACTION; HYDROLYSIS; MERCERIZATION

摘要:Phosphoric acid has been utilized as a favorable alternative to strong acids for the production of cellulose nanospheres (CNS) in recent years, partly owing to the reduced reliance on mechanical assistance. In the present study, phosphoric acid hydrolysis was applied to synthesize CNS from natural cotton pulp. Compared to reported long-time hydrolysis over 12 h, reduced time of 4 h is achieved for CNS production. Particle size from 530 nm to 1.3 & mu;m was further controlled by changing the hydrolysis time in 4-11 h. Powdered sample was obtained after freeze-drying. CNS prepared in this work exhibits a cellulose II structure. Crystallinity index of the samples locates in 70-75 % which is higher than the reported 43-60 % for the acid-hydrolyzed medical cotton. Moreover, compared to the sulphuric-acid hydrolyzed CNS with higher crystallinity, thermal stability of the CNS generated from phosphoric-acid hydrolysis is significantly greater. A cooperative dissolution-regeneration and degradation is proposed to induce CNS self-assembly. Initial cellulose microfibrils are completely dissolved as exposed to phosphoric acid. Partial chains aggregate as a result while the remaining chains assemble onto the aggregates in a layer-by-layer manner. Acid degradation to cellulose with time affects length of the molecular chains. CNS size is controlled accordingly.

卷号:243

期号:

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn