Release time:2024-12-23 Hits:
- Key Words:OXYGEN EVOLUTION; FILM
- Abstract:High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm(-2), and a low Tafel slope of 58.2 mV.dec(-1). And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm(-2).
- Volume:57
- Issue:
- Translation or Not:no