青岛科技大学  English 
吴大雄
赞  

教授

教师拼音名称:wudaxiong

电子邮箱:

学历:博士研究生

性别:男

学位:工学博士

职称:教授

毕业院校:浙江大学

手机版

访问量:

最后更新时间:..

Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management

关键字:GRAPHENE OXIDE; VAPOR GENERATION; CONVERSION PERFORMANCE; NANOFLUIDS; ABSORPTION; NANOPARTICLES; STABILITY

摘要:Volumetric solar steam generation has attracted substantial interest due to its low cost, minimum carbon footprint and wide application in many areas including clean water production, desalination, and wastewater treatment. However, the efficiency of volumetric solar evaporation is still low and there is an urgent need to investigate the fundamental of the limitation of low efficiency and find a new strategy to improve the solar evaporation efficiency. In the current work, antimony doped tin oxide@carbon (ATO@C) nanofluids were prepared by a hydrothermal approach. The ATO@C nanofluids exhibit broadband and high absorption in the solar spectrum due to the complementary effect of C (in visible region) and ATO (in the near infrared region). ATO@C nanofluids of 0.3 wt% could harvest 99.9% of the incident solar energy within 1 cm penetration distance. The photothermal conversion efficiency is 97.8%. The coupling relationship between the solar harvesting and the energy distribution was revealed. Increasing mass fraction and reducing thickness can localize the heat in the surface layer of nanofluids and thus minimize the energy consumption in heating water (internal energy) and therefore improve the solar evaporation efficiency. A high evaporation efficiency of 88.6% was achieved in this way. (c) 2021 Elsevier Ltd. All rights reserved.

卷号:183

期号:

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn