青岛科技大学  English 
万家齐
赞  

硕士生导师  

教师拼音名称:wanjiaqi

所在单位:材料物理教研室

办公地点:二号实验楼413

性别:男

联系方式:wjiaq@qust.edu.cn

学位:工学博士

毕业院校:哈尔滨工业大学

手机版

访问量:

最后更新时间:..

Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries

关键字:STORAGE MECHANISM; ENERGY-STORAGE; ION BATTERIES; COMPOSITE; DIFFUSION

摘要:Rechargeable aluminum batteries (RABs) have received significant interest due to the low cost, high volumetric capacity, and low flammability of aluminum. However, the paucity of reliable cathode materials poses substantial obstacles to the in-depth growth of RABs. Herein, defect engineering in virtue of boron doping is applied to the reduced graphene oxide as the cathode for RABs, endowing graphene with additional defects that improve the capacity and reaction kinetics of the electrode. Moreover, density functional theory (DFT) simulations confirm that the increased electronic conductivity, depressed diffusion barrier, and enhanced AlCl4- adsorption ability may be ascribed to the substitution of boron for carbon. In addition, the B-doped reduced graphene oxide (BG) operates by the intercalation/de-intercalation of AlCl4- upon the charge/discharge process. With these superior qualities, the cathode based on BG displays a high Al-storage capacity (259 mA h g(-1) at 0.5 A g(-1)) and outstanding long-term stability (135 mA h g(-1) at 5 A g(-1) over 10 000 cycles) with a capacity decay of merely 0.0004% per cycle, one of the best performances among the state-of-the-art cathodes for RABs.

卷号:9

期号:5

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn