论文成果

Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration

发布时间:2023-10-19  点击次数:

关键字:REDOX BIOCATALYSIS; HYDROGEN EVOLUTION; GRAPHENE FILMS; G-C3N4; WATER; HETEROJUNCTION; DRIVEN; LIGHT; PHOTOCATALYSIS; REDUCTION

摘要:The development of a metal-free photoelectrode film is of great significance. Herein, graphitic carbon nitride (g-C3N4) nanosheets with a concentration of up to 36 mg mL(-1) were first obtained on a large scale using a wet ball-milling method. The obtained g-C3N4 nanosheets exhibit 6- and 8-times higher activity in terms of photocatalytic H-2 evolution and nicotinamide adenine dinucleotide (NADH) regeneration than bulk g-C3N4, respectively. Furthermore, a uniform g-C3N4 film electrode was fabricated via the interfacial self-assembly of nanosheets at the air/water interface, which can be transferred onto various substrates. By coupling with graphene nanosheets, a g-C3N4/graphene hybrid film electrode was assembled at the interface, showing improved photoelectrochemical coenzyme NADH regeneration efficiency. The photoelectrochemical system uses water as the electron donor, which avoids the drawback of using additional sacrificial agents. This work presents a novel and facile method to prepare highquality g-C3N4 hybrid films, and also provides a sustainable route for renewable energy conversion and biocatalytic applications.

卷号:7

期号:13

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量:| 最后更新时间:--| 开通时间:-- |手机版