青岛科技大学  English 
隋静
赞  

教师拼音名称:suijing

手机版

访问量:

最后更新时间:..

High performance fiber-shaped flexible asymmetric supercapacitor based on MnO2 nanostructure composited with CuO nanowires and carbon nanotubes

关键字:REDUCED GRAPHENE OXIDE; HIGH-ENERGY-DENSITY; COPPER FOAM; WIRE; ELECTRODES; ARRAYS; NANOSHEETS; HYDROXIDE; NETWORKS; DESIGN

摘要:The demand for wearable electronics has greatly promoted the development of flexible supercapacitors. Herein, we develop a series of approaches to fabricate a fiber-shaped supercapacitor with flexibility. In the device, CuO@MnO2, carbon nanotube (CNT)@MnO2 and PVA-KOH are respectively used as inner electrode, outer electrode and gel electrolyte. The approaches including in-situ growth of CNTs, in-situ etching removal of SiO2 template and in-situ filling of gel electrolyte via hydrothermal process are explored to protect the device from structure damage caused by external forces and to maximize effective contact areas between active electrode materials and gel electrolyte. The optimized supercapacitor of copper wire@CuO@MnO2//PVA-KOH// CNT@MnO2 demonstrates a good capacitive performance (5.97 F cm(-3)) and exhibits a high energy density (0.38 mWh cm(-3)) at a power density of 25.5 mW cm(-3). In addition, it has perfect cycling stability (77% after 2000 cycles) with excellent flexibility. Therefore, this work will provide desirable processes to construct fiber-shaped supercapacitors as flexible and wearable energy storage devices.

卷号:48

期号:10

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn