教授
博士生导师
硕士生导师
教师拼音名称:shixinyan
电子邮箱:
所在单位:橡塑材料与工程省部共建教育部重点实验室
职务:橡塑材料与工程省部共建教育部重点实验室常务副主任
学历:博士研究生
办公地点:青岛市舞阳路51-1号青岛科技大学橡塑楼406房间
性别:女
联系方式:0532-84022468
学位:博士
职称:教授
毕业院校:青岛科技大学
移动电话:
邮箱:
通讯/办公地址:
办公室电话:
最后更新时间:..
关键字:
摘要:Fabricating tubular hydrogel models with arbitrary structural complexity and controllable diameters using an ultrafast, facile yet universal method is desirable for vascular prototypes yet still a great challenge. Herein, inspired by the denaturing ability of spider silks, a novel strategy to induce complexation via applying highly concentrated alkali into a polyvinyl alcohol/ionic liquid (PVA/IL) solution, i.e., alkali-induced molecular aggregation (AMA), is proposed to achieve such purpose. This strategy enables the rapid and facile fabrication of tubular hydrogel architectures with tunable diameters, controllable thicknesses, and excellent mechanical performance with a tensile strength of up to 1.1 MPa and stretchability exceeding 600%. Importantly, this novel strategy combined with 3D printing facilitates the rapid fabrication of a variety of precise tubular hydrogel models with connected cavity structures which are difficult to achieve using current methods. This ultrafast solidification strategy could also be extended to various alkalis, cations and anions to build different hydrogels, showcasing its versatility and universality. Hence, this strategy can be pioneering to rapidly fabricate complex three-dimensional and hollow enclosed hydrogel models for simulating endovascular interventional therapy.
卷号:12
期号:2
是否译文:否