李镇江

+

其他联系方式

  • 邮箱:

论文成果

当前位置: 中文主页 > 科学研究 > 论文成果

Preparation, superior field emission properties and first principles calculation of electronic structure of SiC nanowire arrays on Si substrate

  • 发布时间:2023-10-19
  • 点击次数:

  • 关键字:LOW TURN-ON; CARBON-FIBERS; GROWTH; TEMPERATURE; NANOSTRUCTURES; FABRICATION; NANOARRAYS; MORPHOLOGY; STABILITY; RAMAN
  • 摘要:It is a crucial item to develop an available, efficient and stable cathode material for the application of flat-panel display, vacuum micro-electronic device, electron source and related area/equipment. In this work, oriented single-crystalline SiC nanowires (SiCNW) arrays were successfully fabricated onto the Si (100) substrate according to an easy Ni-catalyst-assisted chemical vapor deposition (CVD) process. The systematical characterization results suggested that product growth was modulated via the vapor-liquid-solid (VLS) mechanism. As the promising member in the candidate cathodes, SiCNW arrays with superior current emission stability (similar to +/- 6.1%) displayed decreased turn-on field (1.26 V/mu m) along with threshold field (1.83 V/mu m) at the optimal spacing between anode and cathode (about 500 mu m), suggesting their great application potential as field emitters in the future. The positive effect of the stacking faults on the electronic structure and field emission (FE) properties were investigated through first principles calculation using Vienna ab initio Simulation package (VASP) of density functional theory (DFT). Furthermore, a reasonable synergetic electronic transmission mechanism based on peculiar morphology and electronic band structure was proposed to explain the superior field emission performances.
  • 卷号:180
  • 期号:wu
  • 是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn