论文成果

Synergy between the coordination and trace ionization of co-solvents enables reversible magnesium electroplating stripping behavior

发布时间:2024-12-23  点击次数:

关键字:电池; 金属镁负极; 电解液

摘要:Electrolyte chemistries, including the composition of chemical species and their transformation processes, are of utmost importance for safe and stable operation of any battery, but the corresponding understanding remains incomplete. Prevalent viewpoints on direct solvation are not satisfactory sometimes in describing the implicit relationship among solvents, active ionic species and electrode/electrolyte interphases. Here we report the synergy between the coordination and trace ionization of amine/ether co-solvents to enable a reversible magnesium (Mg)-metal anode for low cost rechargeable Mg batteries. Unique bivalent [Mg(amino)6]2+ is firstly identified as the active ionic species via single-crystal X-ray diffraction, mass spectroscopy, and NMR tests. Partially protonated alkylamine/ether cations, formed due to trace solvent ionization, can chemically associate with the trifluoromethanesulfonimide (TFSI) anion to form neutrally charged ion pairs, mitigating the decomposition of the TFSI anion on the Mg-metal anode. Cryo-electron microscopy images along with the deuterium-oxide (D2O) titration tests reveal a much thin electrolyte-anode interface and one distinctive component of MgH2 in electrodeposits, closely related to the ionization process of co-solvents. A much better Mg plating/stripping reversibility (an overpotential of similar to 0.10 V vs. similar to 2.0 V for the pristine electrolyte) and prolonged cycle life (similar to 320 h vs. similar to 38 h for the pristine electrolyte) are achieved by regulating the coordination/ionization processes of co-solvents. The synergy between coordination and trace ionization induces active ionic species formation and simultaneously alleviates electrolyte decomposition.

卷号:17

期号:2

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量: | 最后更新时间:-- | 开通时间:-- |手机版