李彬   

李彬,博士毕业于复旦大学化学,师从赵东元院士,博士毕业后在新加坡南洋理工大学继续博士后的研究工作。主要从事新型多孔材料的合成与应用,尤其是在微介孔材料的绿色合成、性能调控以及在催化领域中形成了独特的思想见解,取得了一系列有影响力的研究成果。(1)发展了沸石模板制备多孔缺陷碳的方法,并在氯碱工业析氯反应中表现出优异的催化性能。(2)提出了功能纳米颗粒诱导沸石从外到里重结晶的机理,为设计高效催...Detials

Multiple strategies of porous tetrametallene for efficient ethanol electrooxidation

Release time:2023-10-19  Hits:

  • Key Words:ELECTROCATALYTIC ACTIVITIES; ALKALINE MEDIA; FORMIC-ACID; OXIDATION; NANOCRYSTALS; CLEAVAGE
  • Abstract:Due to the complexity of the ethanol oxidation reaction (EOR) process, it is difficult to balance the activity, stability and selectivity of the catalysts. Despite the remarkable progress of Pd-based studies, it is still difficult to solve these problems. Herein, a stable porous metallene structure is introduced and combined with OH adsorption effects, electronic effects and C-C bond cleavage site strategies to improve the EOR performance. The stable structure of metallene provides a large electrochemically active area, which further accelerates the mass transfer rate. After a series of composition and ratio optimizations, Pd59W8Rh19Bi14 porous metallene showed the highest mass activity (16.70 A mg(Pd)(-1)), and excellent C1 selectivity (65.41%), which was better than that of Pd97W3 (6.86 A mg(Pd)(-1), 14.9%), Pd72W11Rh17 (6.98 A mg(Pd)(-1), 53.9%) and Pd64W17Bi19 (8.09 A mg(Pd)(-1), 48.13%). And after a 20 000 s stability test, the catalyst still maintains 32% of its initial activity. It was further demonstrated by electrochemical tests and in situ FTIR that Rh could effectively cleave the C-C bond of ethanol to C1 intermediates, while the oxygenophilic metal Bi could provide a large number of adsorbed OHad species, which facilitates the removal of strongly adsorbed C1 intermediates. By affecting the electronic structure of Pd, the adsorption energy of the poisoning substance on the catalyst surface is weakened. The rational use of various strategies to improve the performance of the catalyst is expected to be a solution for catalyst performance improvement in the alkaline EOR.
  • Volume:10
  • Issue:43
  • Translation or Not:no