青岛科技大学  English 
姜鲁华
赞  

教师拼音名称:jiangluhua

曾获荣誉:

2023-09-01 山东省教书育人楷模

手机版

访问量:

最后更新时间:..

Axial ligand promoted phosphate tolerance of an atomically dispersed Fe catalyst towards the oxygen reduction reaction

关键字:MEMBRANE FUEL-CELLS; N-C CATALYSTS; NANOTUBE COMPOSITES; ANION ADSORPTION; CARBON; METAL; ELECTRODE; ELECTROCATALYSTS; COORDINATION; PERFORMANCE

摘要:Developing active, stable and phosphate anion resistant catalysts is critical for high-temperature proton exchange membrane fuel cells based on phosphoric acid-doped polybenzimidazole (PA-PBI) membranes. Herein, an iron catalyst with a five-coordinated Fe active center is elaborately designed. The experimental and theoretical studies show that the planar Fe-N-4 moiety with an axial O ligand, benefiting from the optimized charge redistribution, weakens phosphate anion adsorption on Fe active centers and simultaneously promotes oxygen molecule dissociation, resulting in excellent phosphate anion tolerance and ORR activity with the half-wave potential remaining at 0.81 V. The axial-ligand promoted Fe-N-C catalyst is assembled for the first time in a PA-PBI fuel cell, delivering a decent performance. This study sheds light on the intrinsic cause for the phosphate anion tolerance of Fe-N-C catalysts at a molecular level, which provides guidance for designing highly active and stable electrocatalysts for PA-PBI fuel cells.

卷号:10

期号:31

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn