青岛科技大学  English 
高洪涛
赞  

教师拼音名称:gaohongtao

手机版

访问量:

最后更新时间:..

A facile pyrolysis synthesis of biochar/ZnO passivator: immobilization behavior and mechanisms for Cu (II) in soil

关键字:HEAVY-METAL POLLUTION; AQUEOUS-SOLUTION; REMOVAL; ADSORPTION; CARBON; NANOCOMPOSITES; SORPTION; CU(II); AS(V); LEAD

摘要:Waste biomass can be recycled to prepare biochar for soil restoration, in which process soil fertility would not be lost. In this work, biochar was prepared from waste pomelo peel, combined with ZnO, to be used to immobilize Cu(II) in contaminated soil, whose maximum adsorption capacity was up to 216.37 mg g(-1). Due to combination of ZnO, the BET surface area of biochar increased from 2.39 to 18.53 m(2) g(-1). Meanwhile, the surface functional groups increased, which was conducive to fixation of metal ion on the surface of biochar. Both pseudo-second-order kinetics and Langmuir isotherm model fit the experimental data well. Adsorption was easy to happen since the adsorption site on the surface of biochar/ZnO had a strong affinity with Cu(II). In addition, mechanism investigation indicated that Cu(II) was bond with biochar/ZnO mainly by non-bioavailable state (75.6%) primarily. It inferred that biochar/ZnO was an efficient and promising passivator in reducing heavy metal risk in soil.

卷号:27

期号:2

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn