青岛科技大学  English 
高洪涛
赞  

教师拼音名称:gaohongtao

手机版

访问量:

最后更新时间:..

三维非负矩阵因子分解代谢组学数据解析

关键字:三维非负矩阵因子分解;;NMF3;;代谢组学;;数据分析

摘要:多维数据解析方法越来越引起人们的重视,非负矩阵因子分解算法已较广泛地用于图像分析。基于PARAFAC模型,将非负矩阵因子分解算法拓展为三维非负矩阵因子分解算法(three dimension non-negative matrix factorization,NMF3)。其原理简明,算法易于执行。与基于向量计算的其他三维化学计量学算法不同,NMF3基于矩阵计算单个元素,所以不必将三维数据平铺处理,就可直接解析,为三维数据解析研究提供了一种全新的思路和方法。应用NMF3解析模拟三维数据和代谢组学数据,结果令人满意。

卷号:

期号:09

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn