青岛科技大学  English 
高洪涛
赞  

教师拼音名称:gaohongtao

手机版

访问量:

最后更新时间:..

Electrochemical sensing platform for naphthol isomers based on in situ growth of ZIF-8 on reduced graphene oxide by a reaction-diffusion technique

关键字:METAL-ORGANIC FRAMEWORK; DOUBLE HYDROXIDE NANOSHEETS; SENSITIVE DETECTION; MODIFIED ELECTRODE; ALPHA-NAPHTHOL; 1-NAPHTHOL; SENSOR; 2-NAPHTHOL; CARBARYL; ELECTROCATALYST

摘要:Enhancing the dispersibility and conductivity is an effective solution to develop the application zeolitic imidazole frameworks (ZIF) in the electrochemical field. This work thus employs a novel reaction-diffu-sion framework (RDF) technique for the in situ growth of ZIF-8 crystals on graphene oxide (GO@ZIF-8) matrixes. In detail, the outer electrolyte of 2-methyl imidazole naturally diffuses into the inner agar gel matrix containing Zn2+ cations and GO nanosheets. The long reaction-diffusion makes the growth of ZIF-8 crystals controllable in a vertical gradient. After thermal treatment, the title product of ZIF-8 in situ grown on reduced graphene oxide (rGO@ZIF-8) is obtained and thus exhibits good dispersibility, high conductivity, large surface area, and more catalytic sites. The glassy carbon electrode (GCE) was modified by casting the rGO@ZIF-8 suspension. The obtained rGO@ZIF-8/GCE displays excellent catalytic activity toward naphthol (NAP) isomers. Under the optimal conditions, the amperometric currents of 1-NAP and 2-NAP demonstrate the good linear relationship in wide ranges of 0.05-12 mu M and 0.02-15 mu M, respectively. Their limits of detection are as low as 15 and 17 nM, respectively. The fabricated modified electrode exhibits excellent selectivity, stability, and reproducibility. The sensor is also utilized to detect NAP molecules in real water samples and indicates good accuracy and reliability. (C) 2020 Elsevier Inc. All rights reserved.

卷号:581

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn