青岛科技大学  English 
池荣虎
赞  

教师拼音名称:chironghu

手机版

访问量:

最后更新时间:..

Data driven latent variable adaptive control for nonlinear multivariable processes

关键字:PARTIAL LEAST-SQUARES; MODEL-PREDICTIVE CONTROL; REGRESSION; DESIGN

摘要:This article aims at a new partial least squares (PLS) control design and analysis in a data-driven framework for nonlinear multivariable processes whose mechanistic models are completely unknown. First, a general nonlinear autoregressive moving average with the exogenous input (NARMAX) model is used as the dynamic nonlinear PLS model. Then, by introducing a dynamic linearisation approach in each latent variable (LV) space, the unknown NARMAX-based PLS model is transformed to a linear dynamic PLS data model (dPLSDM), which can be improved in real time by estimating its unknown parameter using the latent input and output (I/O) data. Next, a data-driven latent variable adaptive control (DDLVAC) is proposed in each LV loop. By virtue of the dPLSDM, the multivariable nonlinear process is decoupled into multiple single-loop systems and the high dimensions of the process data are reduced such that the corresponding DDLVAC is simplified. Further, the DDLVAC only depends on the I/O data without requiring any model information of the original process. Theoretical analysis confirms the validity of the DDLVAC. The simulation study demonstrates the advantages of the DDLVAC such as less storage space, smaller computation burden, less control cost, as well as more robustness against uncertainties.

卷号:56

期号:1

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn