中文

A Novel Data-Driven Terminal Iterative Learning Control with Iteration Prediction Algorithm for a Class of Discrete-Time Nonlinear Systems

Hits:

  • Key Words:

  • Abstract:A data-driven predictive terminal iterative learning control (DDPTILC) approach is proposed for discrete-time nonlinear systems with terminal tracking tasks, where only the terminal output tracking error instead of entire output trajectory tracking error is available. The proposed DDPTILC scheme consists of an iterative learning control law, an iterative parameter estimation law, and an iterative parameter prediction law. If the partial derivative of the controlled system with respect to control input is bounded, then the proposed control approach guarantees the terminal tracking error convergence. Furthermore, the control performance is improved by using more information of predictive terminal outputs, which are predicted along the iteration axis and used to update the control law and estimation law. Rigorous analysis shows the monotonic convergence and bounded input and bounded output (BIBO) stability of the DDPTILC. In addition, extensive simulations are provided to show the applicability and effectiveness of the proposed approach.

  • Volume:

  • Issue:

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..