青岛科技大学  English 
陈光辉
赞  

教授 硕士生导师  

教师拼音名称:chenguanghui

电子邮箱:

职称:教授

手机版

访问量:

最后更新时间:..

Experimental and computational fluid dynamics study on the effects of erosion spiral angle of the cone on cyclone separator performance

关键字:SOLID PARTICLE IMPACT; GAS-FLOW; PRACTICAL ESTIMATION; VORTEX FINDER; PARAMETERS; COLLECTION; DEPOSITION; EFFICIENCY; SURFACE; LENGTH

摘要:In order to improve the cyclone anti-erosion design and performance, the research on the influences of erosion spiral angle on cyclone flow field and separation performance was conducted by numerical simulations using computational fluid dynamics technique with the aid of the Ansys-Fluent 19.2 software and experiments. Based on numerical simulations, Reynolds stress model was used to describe the iation of airflow field, and Oka erosion model was utilized to make predictions about the cyclone wall erosion. The models were verified by the experimental data, ensuring the accuracy of results in this work. The results reveal that the erosion of fine particles on the cyclone wall is caused by the random interaction, and as the particle size increases, the location of collision between the particle and cyclone wall is closer to the air inlet. The cyclone cylinder in inlet channel front and the bottom of the cone is prone to the structural size deformation by the cyclone wall erosion. The cyclone wall erosion enhances the synergistic effect of the secondary flow inside the cyclone separation space, and the cyclone flow field stability further decreases as the increase in the erosion spiral angle at the cone bottom, resulting in a sharp decline in the cyclone performance. Compared with the cyclone without erosion, as the erosion spiral angle is 30 degrees, the size of completely separated particles increases from 4 to 8 mu m, the cut size increases from 1.33 to 1.6 mu m, and the pressure drop is 420.73 Pa with a decrease in about 35.44%.

卷号:36

期号:3

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn