青岛科技大学  English 
陈光辉
赞  

教授 硕士生导师  

教师拼音名称:chenguanghui

电子邮箱:

职称:教授

手机版

访问量:

最后更新时间:..

Enhanced extraction of essential oil from Cinnamomum cassia bark by ultrasound assisted hydrodistillation

关键字:Cinnamon oil;Extraction;Ultrasound;Distillation;Optimization;Chemical composition

摘要:Cinnamon essential oil with many bioactivities is an important raw material for the production of various chemicals,and the conventional hydrodistillation(HD) for cinnamon oil extraction always require a longer extraction time. In this work, ultrasound-assisted hydrodistillation extraction(UAHDE) technique was employed to enhance the extraction efficiency of essential oils from cinnamon barks. The parameters with significant effects on the essential oil extraction efficiency(ultrasound time, ultrasound power, extraction time, liquid–solid ratio) were optimized, and the proposed UAHDE was compared with the conventional HD extraction in terms of the extraction time, extraction yield, and physicochemical properties of extracted oils. Compared to the HD extraction, the UAHDE resulted in a shorter extraction time and a higher extraction yield. Using GC–MS analysis, the UAHDE provided more valuable essential oil with a high content of the vital trans-cinnamaldehyde compounds compared with the HD. Scanning electron micrograph(SEM) confirmed the efficiency of ultrasound irradiation for cinnamon oil extraction. In addition, the analysis of electric consumption and CO2 emission shows that the UAHDE process is a more economic and environment-friendly approach. Thus, UAHDE is an efficient and green technology for the cinnamon essential oil extraction, which could improve the quantity and quality of cinnamon oils.

卷号:36

期号:08

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn