中文

Decorating Pt@cyclodextrin nanoclusters on C3N4/MXene for boosting the photocatalytic H2O2 production

Hits:

  • Abstract:Photocatalytic H2O2 production has become a promising alternative to obtaining H2O2. However, the performance of conventional photocatalysts is usually constrained by their insufficient active sites, low carrier separation, and poor light-harvesting. Herein, we report a high-performance photocatalyst fabricated by decorating per-6-thio-beta-cyclodextrin (SH-beta-CD)-protected platinum nanocluster (Pt@beta-CD NCs) on C3N4/MXene (Ti3C2) (C3N4-M for short) heterojunctions. The key of this design is the employment of Pt@beta-CD NCs, which not only serve as proper electron acceptors for accelerating the carrier separation and offer abundant active sites (the Pt core in NCs), but also provide plentiful "delivery channels" (the hydrophobic cavity of SH-beta-CD) to promote the diffusion of reactant (O-2) to active sites. In addition, the hybridization of MXene with C3N4 largely improves the visible-light harvesting. Leveraging the complementary properties of the Pt core, reactive SH-beta-CD ligand, C3N4, and MXene, the Pt@beta-CD/C3N4-M photocatalyst showed a similar to 6 times higher production of H2O2 (147.1 mu M L-1) than pristine C3N4 (24.2 mu M L-1).

  • Volume:9

  • Issue:11

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..