论文成果
Nitrogen- and Oxygen-Containing Three-Dimensional Hierarchical Porous Graphitic Carbon for Advanced Supercapacitor
点击次数:
关键字:ELECTROCHEMICAL PERFORMANCE; NANOFIBERS
摘要:Three-dimensional hierarchical porous graphitic carbon (HPGC) were synthesized via one-step carbonization-activation and a catalytic strategy. The method can not only improve the graphitization degree of carbon materials, but also offer plentiful interfaces for charge accumulation and short paths for ion/electron transport. Polypyrrole, potassium hydroxide, and nickel acetate were used as the carbon precursors, activating agent, and catalyst, respectively. The retraction and dissolution of Ni caused the change of pore size in the material and led to the interconnected micro/nano holes. Nickel acetate played a significant role in enhancing the electrical conductivity, introducing pseudocapacitance, and promoting ion diffusion. In the supercapacitor, HPGC electrode exhibited a remarkable specific capacitance of 336.3 F g(-1)under 0.5 A g(-1)current density and showed high rate capability, even with large current densities applied (up to 50 A g(-1)). Moreover, HPGC showed optimal cycling stability with 97.4% capacitance retention followed by 3000 charge-discharge cycles. The excellent electrochemical performances coupled with a facile large-scale synthesis procedure make HPGC a promising alternative for supercapacitors.
卷号:10
期号:8
是否译文:

赵云琰

教师拼音名称:zhaoyunyan

电子邮箱:

所属院系:材料科学与工程学院

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..