青岛科技大学  English 
赵文仓
赞  

教师拼音名称:zhaowencang

手机版

访问量:

最后更新时间:..

基于自适配归一化的改进Mask Scoring R-CNN

关键字:自适配归一化;批量归一化;目标检测;实例分割

摘要:基于批量归一化的mask scoring R-CNN在目标检测与实例分割领域展现出卓越性能,其平均精度明显高于传统实例分割模型Mask R-CNN。但是由于批量归一化方法存在小批量精度骤降和大批量GPU内存溢出的缺陷,影响到实际应用中的检测与分割任务效果。自适配归一化方法对各批量大小都有极佳的鲁棒性,可以弥补上述不足。从数学角度给出了减少自适配归一化中计算冗余的证明,并将其应用于mask scoring R-CNN,小批量条件下在COCO数据集内将检测精度提升了4.4%,分割精度提升了3.9%,进一步提升了模型性能。

卷号:v.43;No.338

期号:06

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn