青岛科技大学  English 
赵文仓
赞  

教师拼音名称:zhaowencang

手机版

访问量:

最后更新时间:..

Feature Extraction and Recognition Based on the Biological Analysis

关键字:Stored Product Pests; Biological Analysis; Feature Extraction; BP Neural Networks; Support Vector Machines; Recognition and Classification

摘要:In this paper the extracted features including rectangularity, elongation, invariant moments and the four ratios of the stored product pests, which are the ratio of antennae area to torso area, the ratio of antennae perimeter to torso perimeter, the ratio of head and chest area to abdominal area, the ratio of head and chest perimeter to abdominal perimeter. Then these 13 characteristic parameters are input to BP neural network and SVM for recognition and classification. Form the results we can see that the 13 features in this paper can be well reflected the stable characteristic information of the stored product pests.

卷号:513-517

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn